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Abstract 

Solutions to the mixed Bragg-Laue case for trans- 
mission low-energy electron diffraction (TLEED) are 
derived for thin crystalline slabs and applied to the 
low-voltage (0-1 kV) field-emission point-projection 
transmission microscope [Fink, Schmid, Kreuzer & 
Wierbicki (1991). Phys. Rev. Lett. 67, 1543-1546]. 
Absorption due to inelastic scattering, exchange and 
virtual inelastic scattering effects are considered. The 
relationship between Fourier imaging, shadow imag- 
ing, holography of extended objects and holography 
of small objects is briefly discussed, together with the 
optimum energy for atomic-resolution electron 
microscopy and holography. The importance of 
multiple scattering in transmission-electron interfer- 
ence patterns obtained at LEED energies with 
spherical-wave illumination is evaluated and the 
nature of the optical potential that might be recovered 
holographically is discussed. 

I. Introduction 

This paper describes transmission low-energy elec- 
tron diffraction (TLEED) calculations for electrons 
in the 100-1000 eV range incident on thin crystalline 
metal films a few atomic layers thick. The many-beam 
Bloch-wave method has been used to treat this mixed 
Bragg-Laue case and back-reflected LEED beams are 
also included. The results of the computations are 
applied to the interpretation of the point-projection 
electron images recently reported by Fink, Schmid, 
Kreuzer & Wierzbicki (1991) to determine the impor- 
tance of multiple scattering for the interpretation of 
these images. We also study the conditions of voltage 
and specimen thickness for which a holographic inter- 
pretation may be given to the results and for which 
the required reference beam exists.We are concerned 
in this paper mainly with periodic scattering objects 
whose dimensions are infinite (or much larger than 
the electron probe) in directions normal to the elec- 
tron beam. The case of small objects bathed within 
the beam, for which rays passing around the object 
may act as a holographic reference wave, are briefly 
discussed in the light of our results in § 5. 

The point-projection electron microscope was first 
developed by Boersch (1942) and Gabor's proposal 
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for in-line point-source holography was first 
attempted using this geometry by Haine & Mulvey 
(1952). Lack of source brightness and incoherent 
instabilities rendered this early effort at electron 
holography largely unsuccessful. Modern work has 
used field-emission guns in the off-axis geometry [see 
Tonomura (1987) for a review]. Recently, however, 
st/'iking new results have been obtained at LEED 
energies without using lenses in the in-line geometry 
(Fink et al., 1991). 

Since the penetration of electrons at LEED energies 
(10< V<  1000 eV) is a few nm, for a sufficiently thin 
crystal just a few atomic layers thick, appreciable 
intensity may be transmitted through it to form an 
image. Fig. l (a)  shows the geometry of our variant 
of the field-emission point-projection electron micro- 
scope (Fink et al., 1991). If the angular range 
(measured at the sample) over which the electron 
beam is coherent exceeds the Bragg angle and if the 
sample is periodic, a Fourier image (Cowley & 
Moodie, 1960) forms on a distant screen. This is an 
unaberrated image of the periodic component of the 
wavefield ~ (1 )  shown across the exit face of the 
crystal. This image is formed without lenses or scan- 
ning on certain downstream planes with mag- 
nification M ~-z2/zl, where z2 and z~ are defined in 
Fig. l(a).  Experimental Fourier images of this type 
with zl = 200 nm and z2-~ 10 cm have recently been 
reported at an electron energy of about 300 V, show- 
ing apparent atomic resolution (Fink et al., 1991). 
Fourier images are formed by interference between 
rays leaving the tip at angles differing by multiples 
of the Bragg angle, which interfere after diffraction 
on passing through the crystal. In an earlier paper 
(Spence & Qian, 1992), we showed that lensless 
Fourier imaging is possible in the presence of strong 
multiple scattering, calculated the images to be expec- 
ted and discussed the factors limiting ultimate resol- 
ution. Here we are chiefly concerned with the 
scattering processes inside the crystal rather than with 
Fourier-imaging theory. However, in § 5, we discuss 
briefly the relationship between Fourier imaging, 
shadow imaging, point-projection electron hologra- 
phy and multiple scattering. 

The dynamical theory of electron diffraction in the 
reflection geometry was first introduced by Bethe 
(1928) and adapted to the transmission geometry by 
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Blackman (1939). A modern formulation, appro- 
priate to the RHEED geometry, was given by Collela 
(1972). Reviews are given by Metherell (1975) and 
Humphreys (1979). Although these theories were 
developed for transmission high-energy electron 
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Fig. 1. (a) Geometry of the point-source projection microscope. 
A: Inchworm positioning device. B: STM tube scanner, with tip 
at high negative potential. C: Thin semitransparent ground 
crystal of thickness t. D: Microchannel-plate detector. Image 
wavefunction 1//(1) and detector wavefunction ~ (2) are shown. 
(b) Schematic drawing of the electron wave vectors in three 
regions. The crystal normal n is also shown. The sample is 
assumed to have uniform thickness t. Two wave vectors Xg,, Xg, 

T R and their relationship to Xg and Xg are also shown. (c) The 
Ewald sphere drawn to scale for these calculations. The electron 
energy is 250 eV and the wavelength is 0.775 A. 

diffraction (THEED) in the 10keV-1 MeV range, 
they may readily be extended to LEED energies (pro- 
vided that convergence is fully tested) and are then 
well suited to our problem. [Other computational 
schemes for LEED and RHEED also exist and might 
also be used (Pendry, 1974; Zhao & Tong, 1988; 
Maksym, 1988).] An illuminating discussion of the 
relationship between band theory for low-energy crys- 
tal electrons and the dynamical theory of electron 
diffraction was given by Stern, Perry & Boudreaux 
(1969). This uses a Bloch-wave treatment for electrons 
with moderate energies (100-1000 eV) and includes 
both forward- and backscattered beams. 

The simplifying approximations of THEED theory, 
which may fail at low energies, must be considered. 
For energies of 100-1000 eV, the electron wavelength 
is in the range 1-0.3 ,~ so that the diameter of the 
Ewald sphere is comparable with the reciprocal- 
lattice spacing. The two-beam extinction distance is 
about 1 nm and small-angle scattering approxima- 
tions cannot always be made. The Bragg angle 0B 
may be greater than 10 ° and strong absorption occurs. 
Unlike the THEED case, it is important to include 
backscattered beams to account for all multiple-scat- 
tering processes. The absorption coefficients used to 
describe the depletion of the elastic wavefield by 
inelastic scattering must be investigated, since the 
coefficients used for high-energy electrons (Bird & 
King, 1990) may not be applicable. Exchange and 
virtual inelastic scattering effects cannot be ignored, 
as in THEED,  and their corrections to the crystal 
potential must be estimated. 

In this paper, we present a general formalism for 
many-beam dynamical diffraction for transmission 
low-energy electron diffraction, using the Bloch-wave 
method. 'Absorption'  resulting from inelastic scatter- 
ing has been included through the use of a complex 
optical potential and an estimate of this given. Correc- 
tions to the crystal potential due to exchange effects 
between the incident and crystal electrons have been 
included using the local-density approximation. The 
effect of virtual inelastic scattering on the real part 
of the crystal potential is discussed. Example calcula- 
tions corresponding to the experimental conditions 
used by Fink et al. (1991) for thin gold films are 
presented and discussed. 

2. Theory 

2.1. The dispersion equations. Backscattering 

The wavefield incident on the crystal in the experi- 
ments of Fink et al. (1991) is approximately a 
spherical wave with a divergence greater than twice 
the Bragg angle. This results in coherent overlapping 
diffraction orders, which necessarily produce Fourier 
images (Cowley, 1981). In this paper, we are inter- 
ested in the multiple-scattering aspects of the problem 
and so consider illumination by a plane wave. The 
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complete image for a periodic parallel-sided slab- 
shaped crystal may then be synthesized from a sum 
of incident plane waves differing in angle by multiples 
of the Bragg angle or by using the theorem of 
reciprocity. [For a ray diagram showing how Fourier 
imaging results from coherent overlapping diffraction 
orders and virtual sources, see Spence & Qian (1992)]. 
Following Bethe's original formulation (Bethe, 1928), 
the total electron wavefield within the crystal excited 
by an incident plane wave exp (2*rix • r) can be writ- 
ten as a linear combination of Bloch waves 

air (r) = E b(J)t~(J)(r) (1) 
J 

with $U)(r), the Bloch wave in state j, given by 

$(J)(r) = Y~ C~g j) exp [2¢ri(kU)+g).r] .  (2) 
g 

All Bloch waves correspond to the same total 
energy. The Bloch-wave excitation coefficients b u) 
are determined by the boundary conditions, whereas 
the wave amplitudes C~g j) and the wave vectors k u) 
for each Bloch wave are obtained by solving the 
time-independent Schr6dinger equation 

V2$(r)+(87r2me/h2)[V(r)+ E ] O ( r ) = 0 ,  (3) 

where m is the relativistically corrected electron mass, 
h is Planck's constant, eE is the total electron energy 
and V(r) is the periodic crystal potential, which can 
be expanded in the form of a Fourier series 

V(r)=Y~(h2/2me)Ugexp(2rr ig .r ) .  (4) 
g 

Here, the potential V(r) and its Fourier coefficients 
Vg are positive, while the potential energy eV(r) is 
negative. Substitution of (2) and (4) into (3) yields a 
set of equations for the wave amplitudes (Hirsch, 
Howie, Nicholson, Pashley & Whelan, 1977). 

[K 2 - (k(j) 2 ( j )  +g) ]c,, + E u.c(~.=o, (5) 
h # O  

where 

K = [ ( 2 m e E / h 2 ) +  Uo]'/2=(X2+ Uo) '/2 (6) 

is the amplitude of the electron wave vector within 
the crystal after correction by the mean inner potential 
U0. X is the incident electron wave vector in vacuum. 

The crystal slab is assumed to be parallel sided and 
infinite in directions normal to the beam. Matching 
of the wavefield outside the crystal with that excited 
inside at the entrance surface requires equality of the 
tangential components, 

k ~ = x , = K , .  (7) 

We now let 

k j = K +  y(J)n, (8) 

where n is a unit vector in the outward surface-normal 

direction and the Anpassung y is given by 

y(J)= k~ - Kn. (9) 

Substituting (8) into (5), we obtain a set of equations 
with y(J) and C~g j) as the only unknowns, 

[K 2 - (K + g)2 _ 2(K + g)" ny (j) - y O)2] C~ ) 

+ E u,,c~,,=o. (lO) 
h#O 

This can be further simplified as 

(-~,(')2+O,g~/J)-~g)c~J)+ y. u , c ~ , = 0 ,  (11) 
h # 0  

where 

ag = - 2 ( K z - g z ) ,  (12) 

f l g=g2+2g-  K. (13) 

Equation (11) can be converted into an eigenvalue 
equation by defining a column vector {C~g j)} whose 
elements are the amplitudes C~g ~) 

(-T(J)21+T(J)B-D){C(J)}=O. (14) 

Here, I is a unit matrix and Bgh = 0, Bgg = %; Dgh = 
--Ugh; Dgg =/3g. In general, (14) yields 2n eigenvalues 
y(J) and, therefore, 2n eigenvectors {C(J)}. There are 
thus 2n plane-wave components within the crystal 
with wave vectors k (j). Of these, n represent waves 
traveling in the forward direction, while the other n 
represent waves traveling backwards. Thus, (14) 
includes all of the backscattered and forward-scat- 
tered waves within the crystal. 

To simplify the eigenvalue equation, we define a 
new vector {X~ j)} such that (Kambe, 1988) 

( T(:)I_ B){ C(gJ)} = (J) (Xg } (15) 

and then (14) becomes 

y(J){ X(g j)} = 0{ X(g j)} - D{ C(gJ)}. (16) 

Here 0 is a null matrix. Combining (15) and (16), we 
obtain a new eigenvalue equation with 2n com- 
ponents, 

A( yO)} = TO)( yO)}, (17) 

where (Collela, 1972) 

{ / (Y2>}= x2) j  (18) 

is a column vector of 2n components and 

'0] A =  - D  

is a 2n x 2n supermatrix. Equation (17) can be readily 
solved by numerical methods provided that the struc- 
ture factors Ug are all known. 

4 ̧  
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2.2. Boundary conditions. The mixed Bragg- Laue case 
in T L E E D  

As shown in Fig. l (b) ,  an incident plane wave 
impinging on the entrance surface of a crystal slab 
results in n beams backreflected into vacuum region 
I and 2n Bloch waves excited within the crystal in 
region II. Of these, there are n beams forward scat- 
tered beyond the exit surface at z = - t  into the 
vacuum in region III. Since the Bloch-wave formalism 
considers the total wavefield within the crystal, the 
waves backscattered by the second interface together 
with all of the multiple-scattering effects are included 
in the solutions of the eigenvalue equation (17). Thus, 
the total wavefield in each region can be expressed as 

gq(r) =exp  (27ri x • r )+  Z Rg exp (2rriXg R. r), 
g 

2.  
gqi(r) = Y~ b(J) Y. C~g j) exp [2rri(k(J)+g)-r] ,  (19) 

j=l g 

Imposing boundary conditions for the total electron 
wave function on both surfaces, we obtain 

2n 
6go+ Rg= ~ b(J)c(gi), 

j = l  

2n 
Xnt~gO"[- XgnRg : ~, b(J) C(gJ)( K. + Y(J) + gn), 

j = i  

Tg exp (2~iXgnt) 

_ 2. b(J)C(g j) y(j)+ (23) - Y. exp [ -2 r r i (K .  + g,,)t], 
j = l  

2 .  
XgnTg exp (27rixg.t)= - £ b(J)C(gJ)(K. + y(J) + g.) 

j=l 

xexp [ -2 r r i (K.  + y(J) + g,,) t]. 

This set of 4n equations contains 4n unknowns. Thus, 
Tg, Rg and b (j) are readily solved by standard numeri- 
cal methods. 

l /¢ i i i ( r  ) : ~ Tg exp (27rixg r -  r ) ,  
g 

where Rg and Tg are the reflection and transmission 
coefficients, respectively. The wave vectors in the 
vacuum X R and Xg r can be determined by applying 
the energy-conservation condition for elastic scatter- 
ing. Hence, if inelastic scattering is neglected, 

XI = Xgnl = IX~. (20) 

To match each plane-wave component of ~ ( r )  at 
both vacuum-crystal interfaces, the tangential com- 
ponents of the wave vectors must be equal, 

R r =k{+g,. (21) Xgt : Xgt 

Equations (20) and (21) determine the vacuum wave 
vectors X g and Xg r.  We define two wave vectors Xgt 
and Xg, in the tangential and normal directions such 
that 

Xgt = X, + gt, 

xg .  = I x  2 - (x ,  + g,)2] ' n n .  

The total electron wave function (19) can then be 
written 

a l t i ( r  ) : exp (27ri X • r) 

a t- ~ Rg exp [27ri(Xg t + Xgn)" r], 

g (22/ 
2n 

xl t i i ( r )  ---- )-'. b(J)~ C~g j) exp [2~i(K+ yO)n+g) • r], 
j = l  g 

altn,(r) = 2 rgexp[2rri(Xgt-Xg, ,  ) -r]. 
g 

3. Corrections to the crystal potential 

For real crystals, the incident electron beam under- 
goes elastic scattering, refraction and inelastic scatter- 
ing. In addition, for low-energy electrons (10- 
1000 eV), exchange effects between the incident and 
crystal electrons and virtual inelastic scattering effects 
need to be considered. As for the case ofkeV electrons 
(Hirsch et al., 1977; Yoshioka 1957), these effects can 
be accounted for by suitable corrections to the crystal 
potential. We assume that (as for gold) the crystal 
contains a center of symmetry. Then the total effective 
'optical' potential seen by the incident electrons can 
be written as 

Ven(r)= V(r)+ Vex(r )+AV(r )+iV ' ( r ) ,  (24) 

where V(r) is the positive elastic part of the potential 
[the potential energy eV(r) is negative], Vex(r) is the 
exchange potential, A V(r) is the real contribution to 
the crystal potential due to virtual inelastic scattering 
and iV'(r) is the imaginary part of the potential, which 
takes account of depletion of the elastic wavefield 
by inelastic processes ('absorption'). These mod- 
ifications to the crystal potential mean that the 2n x 2n 
supermatrix A is no longer Hermitian and the eigen- 
values 7 °) become complex. The Hartree electrostatic 
part of the potential V(r) was obtained from a super- 
position of spherical neutral atoms by use of the 
Mott-  Bethe relationship (Humphreys, 1979) between 
X-ray and electron structure factors and the X-ray 
scattering factors tabulated in International Tables for  
Crystallography (1992). These are based on relativistic 
Hartree-Fock calculations for isolated atoms. 

3.1. Exchange corrections 

The exchange poential Vex(r) results from the anti- 
symmetric nature of the total electron wavefunction 
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Table 1. Fourier components of the optical potential 
used (in V) 

Ve~(r) = V(r) + Vex(r ) + A V(r) + iV'(r). 

Ve~(g) V(g) V'(g) 
g Total Elastic Vex(g ) A V(g) Total 

000 39.3+5.7i 28.4 8.0 2.9 5.7 
002 16.9+ 1.7i 16.9 -0.0 0 1.7 
111 19.7+ 1.9i 18.8 ~0.0 0 1.9 

2-20 12.3+ 1.2i 12.3 ~0.0 0 1.2 

under the exchange of electrons-in this case the beam 
and crystal electrons. This repulsion between elec- 
trons of like spin makes a positive contribution to 
Vet(r), making the potential energy eVefr(r) more 
negative (Slater, 1951). For THEED, this correction 
has been shown to be negligible (Rez, 1978) since the 
high-energy beam electron is distinguishable from the 
lower-energy crystal electrons, but the correction 
becomes appreciable at low energies. The accurate 
determination of the exchange energy requires a full 
solution of the Hartree-Fock equations using self- 
consistent methods. However, various approxima- 
tions have been made for LEED (Pendry, 1974). The 
expressions given by Slater (1967), based on the local 
approximation, is commonly used in LEED and we 
adopt it here, taking 

Vex(r ) = o~ Vsla ter ( r ) ,  ( 2 5 )  

where Vslater(r  ) is given (in SI units) by 

Vslater(r)=fpl/3(r) 
with 

C = 3(e/47reo)(3/8~)~/3 

and a-~ ~ for most materials, where p(r) is the local 
electron density in units of number of electrons per 
unit volume. Calculations based on this agree well 
with LEED experimental data at energies up to about 
200 eV (Pendry, 1974). 

This correction may be included by adding an 
additional term to the structure factor Ug, where, 
from (4), 

UgX=(2me/h 2) Vex(g), (26) 

where Vex(g) is a Fourier coefficient of the exchange 
potential Vex(r). The local three-dimensional electron 
density was generated for our calculations using X- 
ray atomic scattering factors taken from the Interna- 
tional Tables for Crystallography (1992) and the rigid- 
ion approximation. The results for Vex(g) are listed 
in Table 1. 

3.2. Inelastic scattering. "Absorption' 

In addition to elastic Bragg scattering, the beam 
electron may excite all the accessible elementary exci- 
tation of the crystal during its traversal. These inelas- 
tic scattering processes cause an attenuation of the 

electric wavefield, while the (later) decay of the 
excitations generates various secondary-emission 
products. Energy deposited in the sample may be 
dissipated as heat (phonons) or result in ionization 
of atoms, leading ultimately to radiation damage via 
the radiolysis mechanism. At the low energies con- 
sidered here, direct displacement of atoms by ballistic 
collisions cannot occur. We are not interested here 
in the decay products of inelastic scattering (which 
may cause damage) but in the effect of inelastic scat- 
tering on the attenuation of the elastic Bragg beams. 
The inelastic scattering mechanisms can be distin- 
guished as localized or delocalized. Plasmon excita- 
tions in the valence band of metals (with energy of 
the order of 10-20 eV) form a major source of inelastic 
scattering. Since this is delocalized, it contributes only 
to the mean absorption V~, causing an equal 
exponential attenuation of all beams with thickness. 
An estimate of V~ for LEED has been made by 
Lundqvist (1969) based on perturbation theory and 
Feynman-diagram analysis. From this theoretical esti- 
mate and from experimental measurements by LEED, 
it has been concluded (Pendry, 1974) that, for most 
materials, V~-~ 4 eV within a factor of two at a beam 
energy of 100 eV. 

The second major contribution to absorption is 
thermal diffuse scattering, consisting of phonon exci- 
tations with energies 0.1-0.01 eV. This scattering is 
localized within the crystal unit cell and so causes 
'anomalous' absorption of LEED beams. Several 
calculations of the Fourier coefficients V~ of the con- 
tribution to the absorption potential V'(r) describing 
excitation of phonons at different temperatures have 
been published for THEED (Bird & King, 1990; Radi, 
1970). These are based on the original formulation 
of Hall & Hirsch (1965), which adopts an Einstein 
model for lattice vibrations. Calculations based on 
this model for low energies E produce unrealistic 
results ( Vg > Vg) owing to the use of plane waves for 
the final scattering state rather than Bloch waves. 
Experimental results for anomalous absorption in 
LEED are scarce; however, Jones McKinney & Webb 
(1966) find for Ag at room temperature the empirical 
result 

/xg = 1.4E -1/2 A -1 (27) 

if E is in V and ;x is the intensity absorption 
coefficient. This expression gives V~(phonon)/Vg-~ 
0.1 and was used in our calculations, as shown in 
Table 1. 

The excitation of inner-shell atomic electrons is 
also an important inelastic scattering process for high- 
energy electrons. For low-energy beam electrons, this 
effect is small (or absent) for the inner localized 
excitations, since the ionization thresholds involved 
are comparable with or greater than the beam energy. 
For the outer shells (e.g. the valence band in semicon- 
ductors), the excitations are more delocalized and the 
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main effect is a small increase in the mean absorption. 
Since the value used for V~ is matched to experi- 
mental data, we have lumped this contribution 
together with the plasmon contribution V~. 

3.3. Virtual inelastic scattering 

Inelastic scattering events that are forbidden by 
classical kinematics but allowable within the time- 
energy uncertainty principle are known as virtual 
events. The first attempt to estimate the effects of 
virtual inelastic scattering for THEED was given by 
Yoshioka (1957). Based on this original expression, 
Rez (1978) pointed out that phonon scattering does 
not contribute to this potential because phonon ener- 
gies are too small. Plasmon scattering also gives no 
contribution to the Fourier coefficients Vg (g ~ 0) of 
the virtual inelastic scattering potential because plas- 
mon scattering is delocalized. The only contribution 
comes from single-electron excitations, particularly 
the excitation of localized inner-shell electrons. Rez's 
calculations for 100 kV electrons incident on Cu show 
that the ratio of the Fourier coefficients of the virtual 
inelastic potential to that of the crystal potential is 
in the order of 10 -5 , which is less than experimental 
errors. Similar calculations for low-energy electrons 
are not available but this contribution will also be 
small. Although the small wave vector in the 
denominator of Yoshioka's expression increases the 
contribution of virtual inelastic scattering at low ener- 
gies, this effect is more than compensated by the 
reduced probability of excitation when the beam 
energy becomes comparable with the ionization 
threshold. 

The contribution of virtual inelastic phonon and 
plasmon scattering to the mean inner potential Vo 
cannot be ignored. Ichikawa & Ohtsuki (1968) give 
a general method for estimating the effect using 
second-order perturbation theory. They estimate the 
phonon and plasmon corrections to the mean inner 
potential for a 250 V beam electron to be about 3 eV 
for A1. This value differs considerably from the value 
of 13.6 eV given by Pendry (1974) because of the 
different ways in which the potential was divided up. 
Pendry's value refers to an optical potential that 
excludes the ion-core contribution but includes con- 
tributions from exchange, virtual inelastic scattering 
and elastic scattering. 

In summary, the most important corrections to the 
total optical potential are those arising from exchange 
and virtual inelastic scattering, which affect V0, the 
contribution to Vg due to absorption from phonon 
scattering and the contribution to V~ due to inelastic 
scattering. 

4. Computational results 

Many-beam dynamical calculations have been com- 
pleted based on (17) and (23) for thin Au films under 

plane-wave illumination with energies of 100- 
1000 eV. Absorption, virtual inelastic scattering and 
exchange corrections were all included in the manner 
described above. Exchange corrections to Vo were 
included, but the small exchange corrections to Vg 
were ignored. Table 1 shows typical values of poten- 
tial coefficients and corrections from various sources. 
Fig. 2 gives the total transmitted electron-beam 
intensity for 250 eV incident electrons. The value of 
the mean absorption used (5.7 V) resulted in an elec- 
tron mean free path of about 9/~, in agreement with 
estimates from LEED for Cu (Pendry, 1974). With a 
high-gain channel plate as detector, it is seen that 
transmission might be detected for thicknesses up to 
several nm for metals, as occurs around the edges of 
holes in transmission-electron microscopy samples or 
through small biological molecules. 

To test the convergence of the Bloch-wave method 
used, a sequence of calculations were made with 
different numbers of beams included. Figs. 3(a)-(c)  
show that it was necessary to include about 50 beams 
in the calculations in order that the addition of more 
beams had negligible effect. Double-precision arith- 
metic was essential. The incorrect results given by the 
few-beam calculations indicate the importance of 
backscattering and multiple-scattering effects for low- 
energy electrons. To describe the electron-scattering 
process accurately and at the same time minimize the 
number of beams in the calculations, it was necessary 
to select with care the beams to be included in the 
calculations, with proximity to the Ewald sphere 
being the most important guide (Fig. l c). For n 
beams, the computing time is proportional to n 2. 

Owing to the small size of the Ewald sphere and 
the limited angular coherence of the field-emission 
tip, the Fourier images reported by Fink et al. (1991) 
are dominated by the interference between overlap- 
ping 111 and 000 orders (Spence & Qian, 1992). Fig. 
4(a) shows the thickness dependence of these beams 
for 260eV electrons, incident on a (110) Au film, 

o'J 
z 0 . 8  

~ 0.6 

~ 0.4 
< n.- 
I-- 

~ 0.2 

t ~ , . . . . .  ~ .................. 

10  20  30  40  

TH ICKNESS (A )  

50 

Fig. 2. The total transmitted intensity v e r s u s  specimen thickness 
for normal incidence on Au(110). The incident electron energy 
is 250eV. The zero-order absorption coefficient used gives a 
mean free path of about 9/1. 
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travelling along [110]. Here, n = 58 beams have been 
included in the calculation. Region A (t < 1 A) indi- 
cates the thickness region within which the zero-order 
intensity I(000) is much larger than the 111 intensity, 
so that the single-scattering approximation holds and 
in-line electron holography allows (in principle) the 
reconstruction of the scattering potential (i.e. 'object 
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Fig. 3. A series of results used to test the convergence of the 

Bloch-wave calculations, for (a) 17, (b) 51 and (c) 98 beams. 
Little change is seen beyond the addition of about 50 beams but 
double precision arithmetic is essential. The incident electron 
energy is 250 eV, for normal incidence on Au(l l0) .  

reconstruction'). (In this approximation, as shown in 
Fig. 4 by the parabolic curve, the intensity is propor- 
tional to t2). In region B, / (000)>1(111)  also, but 
reconstruction recovers the multiply scattered 
wavefield leaving the crystal ('image reconstruction'). 
Figs. 4(b)-(e) show similar results for other accelerat- 
ing voltages. The effect of atomic number is indicated 
in Fig. 4(f) ,  which shows calculations for A1 at 260 V. 
The range of thickness within which the single-scat- 
tering approximation holds is seen to increase with 
increasing voltage and decreasing atomic number. 
Fig. 5 gives the variation of the same transmitted 
intensities with respect to incident-beam energy. A 
crystal thickness of 15 .~ was used. Both the 000 and 
111 beam intensities are highly sensitive to the 
incident electron energy due to the small size of the 
Ewald sphere. Each point on Fig. 5 required about 
4 h of computing time on our VAX 3200 computer. 

Fig. 6 shows the reflected-beam intensities for 
250eV electrons on Au (110) at normal incidence. 
For thicknesses greater than about 30 A, the reflected- 
beam intensities approach a constant. Thus our 
method may also be used to calculate LEED 
intensities reflected from bulk crystals. In the point- 
source microscope, these beams are reflected back 
onto the surface by the intense tip field, where they 
hop along the surface, making detection difficult. 

5. Discussion and concluding remarks 

For compact objects in the point-projection micro- 
scope that are smaller than the coherence width of 
the beam, the wavefield passing around the object 
may be used to provide the reference beam required 
for holography (Haine & Mulvey, 1952; Fink & 
Kreuzer, 1991). Thus, an image may be reconstructed 
holographically provided that the twin-image prob- 
lem of the in-line geometry can be solved [e.g. by the 
method of lenseless Fraunhofer holography used to 
study aerosols (Thompson, Ward & Zinky, 1967)]. 
For this case of a finite object, our computational 
method may also be applied by constructing an 
artificial superlattice, containing, in one unit cell, the 
object and surrounding vaccum (Spence, 1978). It 
may readily be shown (Spence, 1992) that such a 
point-projection shadow image is identical (except 
for magnification) with the image that would be 
formed by use of plane-wave illumination on a plane 
distance zl downstream from the object. This result 
holds for weakly scattering laterally extended objects 
or for compact opaque objects. The focusing error zl 
cannot be removed by additional lenses but may be 
removed by holographic reconstruction for small 
objects. 

We now consider the relationship between Fourier 
images and holography for laterally infinite semi- 
transparent periodic objects with a square lattice. 
In-line holography is impossible with such an exten- 



W. QIAN, J. C. H. SPENCE AND J. M. ZUO 443 

ded object because of the twin-image problem. But 
Fourier images will be formed by interference 
between rays leaving the tip at angles differing by 
multiples of the Bragg angle, after diffraction through 
the crystal. Fig. l (a)  defines the wavefunction across 
the exit face of the crystal, ~ ( 1 ) ,  and the wavefunc- 
tion detected, ~ (2 ) .  According to Fourier-imaging 
theory (Cowley & Moodie, 1960), for a true point 

source, magnified copies air.(2) of air(l) are formed 
on planes satisfying 

1/zl + l /z2 = A/2na 2, (28) 

where n is an integer and a the lattice constant. 
Aberration-free lensless imaging then occurs with 
magnification M = z2/zl. If the restriction is made to 
single-scattering conditions [region A on Fig. 4(a)] 
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Fig. 4. The intensity of the 000 and 111 transmitted beams for (a) 260, (b) 150, (c) 450, (d) 600 and (e) 950 eV electrons incident on 
Au(l l0) .  ( f )  Intensity for 260 eV electrons on AI(110). 58 beams were included in the calculations. Region A (t < 1/~) is the region 
of single scattering allowing holographic reconstruction of the crystal potential, while region B allows reconstruction of the 
multiple-scattering wavefunction leaving the crystal. 
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with resolution limited to the region in which the 
Ewald sphere is 'flat', then 

~(1)  -'- 1 -krVp(r), (29) 

where o- is an interaction constant and Vp(r) is the 
two-dimensional optical potential Veer(r) projected in 
the beam direction. Then, apart from unimportant 
phase factors, the recorded Fourier image is I (2 )=  
~ ( 2 ) ~ ( 2 ) * = ~ ( 1 ) ~ ( 1 ) *  (for unit magnification) 
and so is proportional to [Vp(r)] 2. But the same 
intensity distribution I(2) may be interpreted as a 
hologram if 

~ ( 2 ) = 1 + e ,  (30) 

where e is small and complex. Equation (29) (single 
scattering) is a sufficient condition for (30) (hologra- 
phy) and 

I(2)~--l+e+e*. (31) 

If a reconstruction of this hologram is attempted, the 
resulting real and virtual images can only be separated 
in the in-line geometry if the object is small 
(Thompson, Ward & Zinky, 1967), in which case it 
is possible to reconstruct Vp(r) rather than its square 
(as for Fourier images). The case of Fourier images 
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Fig. 5. The variation of transmitted intensity with incident-beam 
energy for Au(110). The crystal thickness is 15 A. 
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Fig. 6. The reflected-beam intensities for 250 eV incident electrons 
on Au(110) at normal incidence. The constant intensity at large 
thickness indicates that this method can be used to calculate 
reflected intensities from bulk crystals. 

occurring at edges has recently been treated by Clauser 
& Reinsch (1992). 

For finite molecules whose thickness exceeds a few 
atomic layers, the quantity that might be recoved by 
in-line holography (if the twin-image problem can be 
solved) is th'e multiply scattered wavefunction ~(1)  
(the 'image'), not the optical potential Vef~(r) (the 
'object'). ~F(1) may have either maxima or minima 
at atomic sites but preserves the symmetry of Vp(r). 
The resolution is given by the effective source size. 
The recovery of the optical-scattering potential Veer(r) 
from ~(1)  requires a unique solution to the inversion 
problem of quantum mechanics. By comparison with 
early attempts at point-projection electron hologra- 
phy (Haine & Mulvey, 1952), the low-voltage instru- 
ments using physical sources have greatly reduced 
aberration coefficients in the sub-nanometer range 
(Scheinfein, Qian & Spence, 1992). 

The 'object' one wishes to view with a TLEED 
microscope might alternatively be defined as the 
ground-state crystal charge density. This is recover- 
able (using Poisson's equation) from the optical 
potential Veff(r) only if the exchange and virtual- 
scattering corrections are negligible. This occurs at 
high energies. Since the largest corrections are for 
V(000), these corrections will appear as an artificial 
enhancement of the outer bonding-electron density 
(Becker & Coppens, 1990; Spence & Zuo, 1992). For 
an object whose transmission function is a phase 
grating, source and detctor positions can be found 
such that the Fourier images directly resemble the 
projected charge density in the crystal (Cowley & 
Moodie, 1960). Fig. l(c) shows that this is a very 
poor approximation at LEED energies. 

Since only a single set of equivalent beams is scat- 
tered in the forward direction for gold, the periodicity 
of Fourier images with axial-tip coordinate will not 
be observed, since the 'object' is sinusoidal. A 
sinusoidal object is always in focus (Rayleigh, 1881). 

The question arises as to the best choice of 
accelerating voltage for atomic-resolution imaging. 
This involves a compromise between many competing 
factors. Two of the most important concern image 
interpretation and radiation damage [see Buseck, 
Cowley & Eyring (1989) for a review]. At high vol- 
tages (hundreds of kV), the single-scattering approxi- 
mation becomes accurate for conveniently large 
sample thicknesses, greatly simplifying image inter- 
pretation. An intuitive image interpretation becomes 
possible within the point resolution of the instrument 
(currently about 1.5 A at 400 kV). Although ioni- 
zation damage also decreases with accelerating vol- 
tage according to the Bethe law, displacement damage 
increases with accelerating voltage and machines 
become very expensive. As the voltage approaches 
the ionization threshold, the Bethe stopping-power 
law fails and detailed calculations are required for 
each material [Inokuti (1971 ) and references therein]. 
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At low voltages,  ionization damage  may  become 
severe, resulting in a tomic displacement  through the 
radiolysis process (Hobbs ,  1983), but  d isplacement  
damage  does not occur. However ,  multiple scattering 
greatly complicates image interpretat ion at low ener- 
gies, as indicated by these calculations.  (For  example,  
it is difficult to determine whether  atoms appea r  white 
or black.) Thus, interpretabil i ty is maximized and 
damage  minimized by working at a voltage just  below 
the knock-on threshold for surface atoms or defects. 
For  the point-source microscope shown in Fig. 1 (a ) ,  
for a given tip radius,  the m a x i m u m  voltage is limited 
by field desorpt ion and this voltage and the mag- 
nification are not  independen t  since both depend  on 
z~. The use of  an accelerator  introduces aberrat ions  
or, if  micrometer-s ized lenses are used, a l ignment  
difficulties. Other  factors influencing the choice of  
accelerat ing voltage include the increase of  source 
brightness with voltage and  the decrease in detector 
efficiency with voltage (commensura te  with weaker  
sample interaction).  Higher-speed recording with 
efficient detectors reduces the effects of  radiat ion 
damage.  I f  magnet ic  electron lenses are used, the 
reduct ion in wavelength at higher  voltage more  than 
compensates  for increased lens aberrat ions but  elec- 
tronic ( incoherent)  instabilities in power  supplies 
must  be considered (Spence,  1988). Aberra t ion  
coefficients for the virtual source used by Fink et al. 
(1991) are extremely small  because of  the small radius 
of  curvature  of  the tip field (Scheinfein,  Qian & 
Spence,  1992). In summary ,  interpretabil i ty [in terms 
of  V ( r ) ,  not Veer(r)], source brightness,  ionization- 
damage  condit ions and lens per formance  all improve 
with increasing accelerat ing voltage, whereas ballistic 
damage  increases and detector  efficiency decreases.  
The best a l l - round compromise  would appea r  to con- 
sist of  a field-emission point-project ion instrument  
operat ing just  below the knock-on threshold,  if such 
an ins t rument  could be built and aligned, using 
micrometer-sized electrostatic-lens apertures  to form 
the source at about  200 kV. 

The most  impor tan t  results from this work concern 
the validity domain  of  the single-scattering approxi-  
mat ion ( summar ized  in Fig. 4). We find that  this 
approx imat ion  fails for monolayer  thicknesses of  
heavy- and l ight-element crystals at energies below 
1 kV and similar results can be expected for organic 
molecules. Single-scattering condit ions can some- 
times be identified exper imental ly  since they result 
in a weak image modula t ion  on a strong background ,  
but  this may  be confused with regions such as B on 
Fig. 4(a) .  

This work was suppor ted  by N S F  grant  no. 
DMR91-12550.  We are grateful  to Dr  M. Scheinfein 
for many  useful discussions. 
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